Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20244368

ABSTRACT

Bivalent COVID-19 vaccines that contain two mRNAs encoding Wuhan-1 and Omicron BA.4/5 spike proteins are successful in preventing infection from the original strain and Omicron variants, but the quality of adaptive immune responses is still not well documented. This study aims at characterizing adaptive immune responses to the bivalent booster vaccination in 46 healthy participants. Plasma and PBMC were collected prior and three weeks after bivalent booster. We measured anti-N, anti-S, and RBD IgM, IgA, IgG plasma titers against original, Omicron BA.1, and BA.5 variants (pending) as well as total anti-S IgG titers and surrogate Virus Neutralization capacity against the Alpha, Delta, and BA.1 variant. With spectral flow-cytometry we identified peripheral blood B-cells specific for the RBD of the S-protein of the original and BA.1 variants. T-cell-specific responses were assessed by cytokine release assay after stimulation with SARS-CoV-2 peptides from the original, BA.1, BA.4, and BA.5 variants (pending). Finally, we performed TRB and IGH repertoire studies on sorted CD4+, CD8+, CD19+ lymphocytes, to study breadth of SARS-CoV-2 specific clonotypes (pending). 27/46 participants were analyzed;9 had SARS-CoV-2 infection (COVID+), while 18 are infection naive (COVID-). In both groups, median time since last dose of SARS-CoV-2 vaccine (3rd or 4th) was 11 months. All subjects were positive for anti-S IgG prior to bivalent booster. The COVID + group displayed anti-S IgG pre-booster levels and neutralization against BA.1 higher than the COVID- group. Significant increase post-boost of total anti-S IgG and BA.1 neutralizing activity was detected in the COVID- but not in the COVID+ group;however, no difference in neutralization activity post-boost was detected between the two groups. Furthermore, the COVIDgroup showed significant increase in the frequency of CD19+ and CD27+ switched memory B-cells specific for BA.1 RBD in post-boost compared to pre-boost samples. However, post-boost frequencies of the same B-cells were higher in the COVID+ compared to the COVID- group. These preliminary findings confirm that among individual immunized with the original COVID-19 mRNAvaccine, prior COVID infection provides increased protection against SARS-CoV-2 variants. They also demonstrate that booster immunization with the bivalent vaccine induces robust adaptive immune responses against Omicron variant.[Formula presented][Formula presented]Copyright © 2023 Elsevier Inc.

2.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243903

ABSTRACT

Background: High-titer neutralizing anti-cytokine autoantibodies have been shown to be involved in several acquired diseases, including pulmonary alveolar proteinosis, cryptococcal meningitis, and disseminated/extrapulmonary Nocardia infections (anti-GM-CSF autoantibodies), disseminated mycobacterial disease (anti-IFN-gamma autoantibodies), and some cases of severe COVID-19 infection (anti-type 1 interferons). Currently, patient blood samples are shipped via courier and require temperaturecontrolled conditions for transfer. This method is expensive and requires patients to have access to medical personnel to draw the blood. However, the well-established technique of collecting blood on a paper card as a dried blood spot (DBS) for diagnosis offers a point of care alternative which can be performed with a simple finger prick. This method is less invasive, cheaper, and allows for easy transport of patient samples. Method(s): 30 uL of whole blood from patients was blotted on filter paper and stored at 4C until use. The filter paper was hole punched and each punched spot was eluted with 150 uL of a 0.05% Tween PBS solution at room temperature overnight. The eluate was screened for anti-cytokine autoantibodies using a particle-based approach. Patient plasma was also screened in conjunction for comparison. Result(s): We confirmed the presence of autoantibodies in the DBS eluate from 4 previously diagnosed patients with anti-GM-CSF autoantibodies and 2 patients with anti-IFN-gamma autoantibodies. Functional studies showed the DBS eluate from a patient with anti-GM-CSF autoantibodies was able to block GM-CSF-induced STAT-5 phosphorylation in normal PBMC. As a proof of concept and to increase the number of patients evaluated, we also confirmed the presence of anti-cytokine autoantibodies using dried plasma eluate from 9 patients with known anti-GM-CSF autoantibodies and 9 patients with anti-IFN-gamma autoantibodies. Levels detected in DBS analyses were comparable to the levels found in plasma from the same patients not subjected to blotting and elution. Temperature studies showed that the autoantibodies were detected at similar levels when stored at 4C, 25C, and 40C for a week. Conclusion(s): The diagnosis of pathogenic anti-cytokine autoantibodies should be considered in the context of unusual or adult-onset infections, and screening for this diagnosis can be performed with dried blood spot testing.Copyright © 2023 Elsevier Inc.

3.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243104

ABSTRACT

Genotypic definition of monogenic inborn errors of immunity (IEIs) continues to accelerate with broader access to next generation sequencing, underscoring this aggregated group of disorders as a major health burden impacting both civilian and military populations. At an estimated prevalence of 1 in 1200 individuals, IEIs affect ~8,000 patients within the Military Health System (MHS). Despite access to targeted gene/exome panels at military treatment facilities, most affected patients never receive a definitive genetic diagnosis that would significantly improve clinical care. To address this gap, we established the first registry of IEI patients within the MHS with the goal of identifying known and novel pathogenic genetic defects to increase diagnosis rates and enhance clinical care. Using the registry, a research protocol was opened in July 2022. Since July we have enrolled 75 IEI patients encompassing a breadth of phenotypes including severe and recurrent infections, bone marrow failure, autoimmunity/autoinflammation, atopic disease, and malignancy. Enrolled patients provide blood and bone marrow samples for whole genome, ultra-deep targeted panel and comprehensive transcriptome sequencing, plus cryopreservation of peripheral blood mononuclear cells for future functional studies. We are also implementing and developing analytical methods for identifying and interrogating non-coding and structural variants. Suspected pathogenic variants are adjudicated by a clinical molecular geneticist using state-of-the-art analysis pipelines. These analyses subsequently inform in vitro experiments to validate causative mutations using cell reporter systems and primary patient cells. Clinical variant validation and return of genetic results are planned with genetic counseling provided. As a proof of principle, this integrated genetic evaluation pipeline revealed a novel, candidate TLR7 nonsense variant in two adolescent brothers who both endured critical COVID-19 pneumonia, requiring mechanical ventilation and extracorporeal membrane oxygenation. Our protocol is therefore poised to greatly enrich clinical genetics resources available in the MHS for IEI patients, contributing to better diagnosis rates, informed family counseling, and targeted treatments that collectively improve the health and readiness of the military community. Moreover, our efforts should yield new mechanistic insights on immune pathogenesis for a broad variety of known and novel IEIs.Copyright © 2023 Elsevier Inc.

4.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(8 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20242045

ABSTRACT

The sudden onset of the 2019 SARS-CoV-2 pandemic required agile development of standards and efficient validation of assays to assess prevalence of infection as well as immune responses to infection and vaccination. Leveraging their experience in HPV serology and standards, the Vaccine, Immunity and Cancer Directorate (VICD) at the Frederick National Laboratory for Cancer Research (FNCLR) pivoted to address this unmet need in SARS-Co-V2 serology clinical testing and research. This standardization effort required the collection and processing of large volumes of blood from SARS-Co-V2 infected and uninfected individuals into serum and peripheral blood mononuclear cells (PBMCs). Collaborations with specimen collection sites across the United States were established. Following qualification for anti-SARS-CoV-2 IgG and IgM levels in independent laboratories, VICD assembled reference evaluation panels, which were used to assist the FDA's performance evaluation of commercial assays submitted for EUA approval. To date, 185 different shipments of the standard or validation panel have been sent to both domestic and international labs. These materials are also available to the SARS-CoV-2 serology community for assay calibration and performance evaluation which greatly facilitates assay data harmonization. In addition, the NCI Serological Sciences Network (SeroNet) was born from this initiative and expertise, resulting in the establishment of Capacity Building Centers (CBCs) for sample collection from different healthy, cancer and immunocompromised cohorts at Mount Sinai, Arizona State University, the University of Minnesota, and Northwell Feinstein. The NCI and FNLCR simultaneously collaborated to develop a network of investigators focused on advancing research on the immune response to SARS-CoV-2 infection and vaccination among diverse and vulnerable populations, including cancer patients. Their research has resulted in over 326 peer-reviewed publications. The CBC's have enrolled patients in longitudinal studies, resulting in a centralized collection of annotated, well characterized serum, PBMCs and clinical data. Numerous cancer cohorts, but predominantly Multiple Myeloma, are included. Furthermore, technology development was supported at the CBC's. Based upon this success, the VICD in collaboration with NCI is pursuing an even more innovative effort in pandemic preparedness to establish a Center for Serology and Data Emergency Preparedness (CESDEP);a global network able to activate and pivot to address pandemic-level threats, while continuing to expand the development of immunological assays that can inform clinical decisions for cancer and other immunocompromised patients.

5.
Cytotherapy ; 25(6 Supplement):S232-S233, 2023.
Article in English | EMBASE | ID: covidwho-20237943

ABSTRACT

Background & Aim: Immunological characteristics of COVID-19 show pathological hyperinflammation associated with lymphopenia and dysfunctional T cell responses. These features provide a rationale for restoring functional T cell immunity in COVID-19 patients by adoptive transfer of SARS-CoV-2 specific T cells. Methods, Results & Conclusion(s): To generate SARS-CoV-2 specific T cells, we isolated peripheral blood mononuclear cells from 7 COVID-19 recovered and 13 unexposed donors. Consequently, we stimulated cells with SARS-CoV-2 peptide mixtures covering spike, membrane and nucleocapsid proteins. Then, we culture expanded cells with IL-2 for 21 days. We assessed immunophenotypes, cytokine profiles, antigen specificity of the final cell products. Our results show that SARSCoV- 2 specific T cells could be expanded in both COVID-19 recovered and unexposed groups. Immunophenotypes were similar in both groups showing CD4+ T cell dominance, but CD8+ and CD3+CD56+ T cells were also present. Antigen specificity was determined by ELISPOT, intracellular cytokine assay, and cytotoxicity assays. One out of 14 individuals who were previously unexposed to SARS-CoV-2 failed to show antigen specificity. Moreover, ex-vivo expanded SARS-CoV-2 specific T cells mainly consisted of central and effector memory subsets with reduced alloreactivity against HLA-unmatched cells suggesting the possibility for the development of third-party partial HLA-matching products. In conclusion, our findings show that SARSCoV- 2 specific T cell can be readily expanded from both COVID-19 and unexposed individuals and can therefore be manufactured as a biopharmaceutical product to treat severe COVID-19 patients.Copyright © 2023 International Society for Cell & Gene Therapy

6.
European Journal of Human Genetics ; 31(Supplement 1):627-628, 2023.
Article in English | EMBASE | ID: covidwho-20235387

ABSTRACT

Background/Objectives: COVID-19 still represents a lifethreatening disease in individuals with a specific genetic background. We successfully applied a new Machine Learning method on WES data to extract a set of coding variants relevant for COVID- 19 severity. We aim to identify personalized add-on therapy. Method(s): A subset of identified variants, "actionable" by repurposed drugs, were functionally tested by in vitro and in vivo experiments. Result(s): Males with either rare loss of function variants in the TLR7 gene or L412F polymorphism in the TLR3 gene benefit from IFN-gamma, which is specifically defective in activated PBMCs, restoring innate immunity. Females heterozygous for rare variants in the ADAMTS13 gene and males with D603N homozygous polymorphism in the SELP gene benefit from Caplacizumab, which reduces vWF aggregation and thrombus formation. Males with either the low-frequency gain of function variant T201M in CYP19A1 gene or with poly-Q repeats >=23 in the AR gene benefit from Letrozole, an aromatase inhibitor, which restores normal testosterone levels, reducing inflammation and which rescues male golden hamsters from severe COVID-19. Conclusion(s): By adding these commonly used drugs to standard of care of selected patients, the rate of intubation is expected to decrease consistently, especially in patients with high penetrance rare genetic markers, mitigating the effect of the pandemic with a significant impact on the healthcare system.

7.
Maternal-Fetal Medicine ; 5(2):88-96, 2023.
Article in English | EMBASE | ID: covidwho-20235041

ABSTRACT

Objective This study aimed to investigate the immune response of a pregnant woman who recovered from the coronavirus disease 2019 (COVID_RS) by using single-cell transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) and to analyze the properties of different immune cell subsets. Methods PBMCs were collected from the COVID_RS patient at 28 weeks of gestation, before a cesarean section. The PBMCs were then analyzed using single-cell RNA sequencing. The transcriptional profiles of myeloid, T, and natural killer (NK) cell subsets were systematically analyzed and compared with those of healthy pregnant controls from a published single-cell RNA sequencing data set. Results We identified major cell types such as T cells, B cells, NK cells, and myeloid cells in the PBMCs of our COVID_RS patient. The increase of myeloid and B cells and decrease of T cells and NK cells in the PBMCs in this patient were quite distinct compared with that in the control subjects. After reclustering and Augur analysis, we found that CD16 monocytes and mucosal-Associated invariant T (MAIT) cells were mostly affected within different myeloid, T, and NK cell subtypes in our COVID_RS patient. The proportion of CD16 monocytes in the total myeloid population was increased, and the frequency of MAIT cells in the total T and NK cells was significantly decreased in the COVID-RS patient. We also observed significant enrichment of gene sets related to antigen processing and presentation, T-cell activation, T-cell differentiation, and tumor necrosis factor superfamily cytokine production in CD16 monocytes, and enrichment of gene sets related to antigen processing and presentation, response to type II interferon, and response to virus in MAIT cells. Conclusion Our study provides a single-cell resolution atlas of the immune gene expression patterns in PBMCs from a COVID_RS patient. Our findings suggest that CD16-positive monocytes and MAIT cells likely play crucial roles in the maternal immune response against severe acute respiratory syndrome coronavirus 2 infection. These results contribute to a better understanding of the maternal immune response to severe acute respiratory syndrome coronavirus 2 infection and may have implications for the development of effective treatments and preventive strategies for the coronavirus disease 2019 in pregnant women.Copyright © Wolters Kluwer Health, Inc. All rights reserved.

8.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20233273

ABSTRACT

Background: COVID-19 causes significant morbidity and mortality, albeit with considerable heterogeneity among affected individuals. It remains unclear which host factors determine disease severity and survival. Given the propensity of clonal hematopoiesis (CH) to promote inflammation in healthy individuals, we investigated its effect on COVID-19 outcomes. Method(s): We performed a multi-omics interrogation of the genome, epigenome, transcriptome, and proteome of peripheral blood mononuclear cells from COVID-19 patients (n=227). We obtained clinical data, laboratory studies, and survival outcomes. We determined CH status and TET2-related DNA methylation. We performed single-cell proteogenomics to understand clonal composition in relation to cell phenotype. We interrogated single-cell gene expression in isolation and in conjunction with DNA accessibility. We integrated these multi-omics data to understand the effect of CH on clonal composition, gene expression, methylation of cis-regulatory elements, and lineage commitment in COVID-19 patients. We performed shRNA knockdowns to validate the effect of one candidate transcription factor in myeloid cell lines. Result(s): The presence of CH was strongly associated with COVID-19 severity and all-cause mortality, independent of age (HR 3.48, 95% CI 1.45-8.36, p=0.005). Differential methylation of promoters and enhancers was prevalent in TET2-mutant, but not DNMT3A-mutant CH. TET2- mutant CH was associated with enhanced classical/intermediate monocytosis and single-cell proteogenomics confirmed an enrichment of TET2 mutations in these cell types. We identified celltype specific gene expression changes associated with TET2 mutations in 102,072 single cells (n=34). Single-cell RNA-seq confirmed the skewing of hematopoiesis towards classical and intermediate monocytes and demonstrated the downregulation of EGR1 (a transcription factor important for monocyte differentiation) along with up-regulation of the lncRNA MALAT1 in monocytes. Combined scRNA-/scATAC-seq in 43,160 single cells (n=18) confirmed the skewing of hematopoiesis and up-regulation of MALAT1 in monocytes along with decreased accessibility of EGR1 motifs in known cis-regulatory elements. Using myeloid cell lines for functional validation, shRNA knockdowns of EGR1 confirmed the up-regulation of MALAT1 (in comparison to wildtype controls). Conclusion(s): CH is an independent prognostic factor in COVID-19 and skews hematopoiesis towards monocytosis. TET2-mutant CH is characterized by differential methylation and accessibility of enhancers binding myeloid transcriptions factors including EGR1. The ensuing loss of EGR1 expression in monocytes causes MALAT1 overexpression, a factor known to promote monocyte differentiation and inflammation. These data provide a mechanistic insight to the adverse prognostic impact of CH in COVID-19.

9.
American Journal of Reproductive Immunology ; 89(Supplement 1):55-56, 2023.
Article in English | EMBASE | ID: covidwho-20233187

ABSTRACT

Problem: Environmental stress during pregnancy has known impacts on both maternal and fetal health. In terms of theCOVID-19 pandemic, the majority of published work has focused on the impact of the infection itself, without considering the potential immune impact of pandemic related-stress.We, therefore, assessed the impact of pandemic stress, independently of SARS-CoV-2 infection, on the circulating and placental immune profiles of pregnant individuals. Method(s): Placentas from 239 patients were collected at the Sainte- Justine Hospital, Montreal, Canada. Of these, 199 patients delivered during the pandemic and were exposed to pandemic stress with (+: 79) or without (-: 120) SARS-CoV-2 infection, the latter exposed to pandemic stress only. Pre-pandemic historic controls (uncomplicated pregnancies, Ctrl: 40), were also included. Placental biopsies were collected to assess cytokine levels by ELISAs and histopathological lesions. A sub-study with 35 pre-pandemic pregnancies (unexposed) and 20 who delivered during the pandemic (exposed) was also conducted. The latter (exposed/unexposed) were all uncomplicated pregnancies. We collected maternal blood prior to delivery for immunophenotyping, and plasma/peripheral blood mononuclear cells (PBMCs) were isolated. Inflammatory mediators in the plasma were quantified by ELISAs. Co-culture assays with PBMCs and human umbilical vein endothelial cells (HUVECs) were performed to assess endothelial activation. Demographical/obstetrical data were obtained through chart review. Result(s): SARS-CoV-2+ patients were multiethnic (63.4%), had higher pre-pregnancyBMI (28.9 vs. 24.8 inCtrl, P<.05), and elevated preterm birth rate (16.5% vs. 5.8% in SARS-CoV-2-, P < .05 and 0.0% in Ctrl, P < .01). In the placentas, we observed an increase in the levels of IL- 1Ra (P < .05) and CRP (P < .05) in both SARS-CoV-2 groups, while IL-6 (P = .0790) and MCP-1 (P < .001) were elevated solely in SARS-CoV- 2-. These changes were predominant in placentas with inflammatory lesions on histopathological analysis. Moreover, we observed elevated CD45+ cells (P < .001) in the placentas from both SARS-CoV-2 groups versus Ctrl. Considering that the differences we observed were important in the SARS-CoV-2- group, we performed a study solely on uncomplicated pregnancies, either exposed or unexposed to pandemic stress. At the systemic level, we observed a decrease in the percentage of Th2 cells (P < .001), leading to a pro-inflammatory Th1/Th2 imbalance in exposed individuals. Decreased Treg (P < .05) and Th17 (P < .05) versus unexposed was also observed. Surprisingly, decreased levels of circulating IL-6 (P < .05), MCP-1 (P < .01), and CRP (P<.05) were seen in exposed versus unexposed individuals. Finally,we observed increased secretion of ICAM, a marker of endothelial activation, solely in endothelial cells co-cultured with PBMCs from exposed individuals. Conclusion(s): Overall, placental inflammatory profiles differed between pregnant individuals exposed to pandemic stress with or without SARS-CoV-2 infection. Moreover, we observed that the pandemic stress exposed group presented a systemic pro-inflammatory bias. This highlights the need to understand the differences between the effects of pandemic-related stress and the added burden of SARS-CoV-2 infection itself on maternal and fetal health. Our work also supports an association between an increased risk of hypertension/ preeclampsia and SARS-CoV-2 infection that might be driven in part by pandemic-related stress.

10.
EMBO Reports. ; 2023.
Article in English | EMBASE | ID: covidwho-2321666

ABSTRACT

Coronavirus-induced disease-19 (COVID-19), caused by SARS-CoV-2, is still a major global health challenge. Human endogenous retroviruses (HERVs) represent retroviral elements that were integrated into the ancestral human genome. HERVs are important in embryonic development as well as in the manifestation of diseases, including cancer, inflammation, and viral infections. Here, we analyze the expression of several HERVs in SARS-CoV-2-infected cells and observe increased activity of HERV-E, HERV-V, HERV-FRD, HERV-MER34, HERV-W, and HERV-K-HML2. In contrast, the HERV-R envelope is downregulated in cell-based models and PBMCs of COVID-19 patients. Overexpression of HERV-R inhibits SARS-CoV-2 replication, suggesting its antiviral activity. Further analyses demonstrate the role of the extracellular signal-regulated kinase (ERK) in regulating HERV-R antiviral activity. Lastly, our data indicate that the crosstalk between ERK and p38 MAPK controls the synthesis of the HERV-R envelope protein, which in turn modulates SARS-CoV-2 replication. These findings suggest the role of the HERV-R envelope as a prosurvival host factor against SARS-CoV-2 and illustrate a possible advantage of integration and evolutionary maintenance of retroviral elements in the human genome.Copyright © 2023 The Authors.

11.
Topics in Antiviral Medicine ; 31(2):115, 2023.
Article in English | EMBASE | ID: covidwho-2320703

ABSTRACT

Background: Although our understanding of immunopathology in the risk and severity of COVID-19 disease is evolving, a detail of immune response in long-term consequences of COVID-19 infection remains unclear. Recently, few studies have detailed the immune and cytokine profiles associated with PASC. However, dysregulation of immune system driving pulmonary PASC is still largely unknown. Method(s): To characterize the immunological features of PPASC, we performed droplet-based scRNA-sequencing using 10X genomics to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from participants naive to SARS-CoV-2 (NP, n=2) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC, n=2). Result(s): Analysis of more than 34,000 PBMCs by integrating our dataset with previously reported control datasets generated cell distribution and identified 11 immune cell types based on canonical gene expression. The proportion of myeloid-lineage cells (CD14+monocyte, CD16+monocyte, and dendritic cells) and platelets were increased in PPASC compared with those of NP. Specifically, PPASC displayed up-regulation of VEGFA and transcription factors, such as ATF2, ELK, and SMAD in myeloid-lineage cells. Also, TGF-beta and WNT signaling pathways were up-regulated in these cell population. Cell-cell interaction analysis identified that myeloid-lineage cells in PPASC participated in regulation of fibrosis and immune response, such as VEGFA (increased) and MIF (decreased) interactions. Conclusion(s): Together, this study provides high-resolution insights into immune landscape in PPASC. Our results emphasize differences in myeloid lineage-mediated fibrosis and immunity between PPASC and NP, suggesting they could act as potential pathological drivers of PPASC. (Figure Presented).

12.
Topics in Antiviral Medicine ; 31(2):137, 2023.
Article in English | EMBASE | ID: covidwho-2318130

ABSTRACT

Background: To understand T-cell responses to SARS-CoV-2, it is essential to define the contribution of infection versus immunization to virus-specific hybrid immunity. Here, we characterized the breadth and magnitude of T-cell responses to the entire SARS-CoV2 proteome over a 2-year follow-up period in infected and vaccinated (CoV2+Vac+) and vaccinated and infected (Vac+CoV2+) individuals. Method(s): We selected samples from 38 (19 CoV2+ and 19 CoV2-, time1, T1) ProHEpiC-19 cohort participants, a prospective, longitudinal study starting in March 2020 involving 7,776 healthcare workers in Spain. Longitudinal samples were available from 10 of them after a 3-dose mRNA vaccination, including 5 CoV2+Vac+ and 5 Vac+CoV2+, at 824.5 and 250.5 days from symptoms onset (DfSO, time 2, T2). We measured the breadth and magnitude of IFN-y T-cell responses by ELISpot assay in cryopreserved PBMCs, using a 15-mer overlapping peptide (OLP) library of 2,790 SARS-CoV-2 peptides in 100 pools. Result(s): We identified immunodominant T-cell responses in S1, S2, nsp3, Env, NC, and M proteins across the SARS-CoV2 proteome. We observed an increased breadth of T-cell responses (responding pools over the entire region) to S1 (44 - 30%) and S2 (31 - 40%) in CoV2+Vac+ and Vac+CoV2+, respectively. In addition, CoV2+Vac+ had an exclusive and sustained response to M. We found significantly stronger responses in CoV2+Vac+ (P=0.0313). Particularly the total magnitude was greater in CoV2+Vac+ vs. Vac+CoV2+ in S1 (4476.88 vs. 1498.53), Env (457.34 vs. 250.50), and M (455.13 vs. 0.00) but not in S2 and nsp3. The total number of peptides for deconvolution was higher in CoV2+Vac+ (32 peptides) than in Vac+CoV2+ (3 peptides) during the follow-up. Seventy-five percent of the responses targeted S, and 25% M, ORF1a, and Env. Conclusion(s): These results profile immunodominant T-cell responses in S1, S2, nsp3, Env, NC, and M proteins across the entire SARS-CoV2 proteome. The data delineate differences in the number of T-cell responses primed hybrid immunity by infection previous to vaccination (CoV2+Vac+), being broader and of higher magnitude and underlining an exclusive T-cell response to the M region. Overall, these findings identify differences in long-term T-cell hybrid immunity primed by infection or vaccination, which may have implications in protection from re-infection and vaccine design.

13.
Topics in Antiviral Medicine ; 31(2):147, 2023.
Article in English | EMBASE | ID: covidwho-2317889

ABSTRACT

Background: The impact of COVID-19 infection or COVID-19 vaccination on the immune system of people living with HIV (PLWH) is unclear. We therefore studied the effects of COVID-19 infection or vaccination on functional immune responses and systemic inflammation in PLWH. Method(s): Between 2019 and 2021, 1985 virally suppressed, asymptomatic PLWH were included in the Netherlands in the 2000HIV study (NCT039948350): 1514 participants enrolled after the start of the COVID-19 pandemic were separated into a discovery and validation cohort. PBMCs were incubated with different stimuli for 24 hours: cytokine levels were measured in supernatants. ~3000 targeted plasma proteins were measured with Olink Explore panel. Past COVID-19 infection was proven when a positive PCR was reported or when serology on samples from inclusion proved positive. Compared were unvaccinated PLWH with and without past COVID-19 infection, and PLWH with or without anti-COVID-19 vaccination excluding those with past COVID-19 infection. Result(s): 471 out of 1514 participants were vaccinated (median days since vaccination: 33, IQR 16-66) and 242 had a past COVID-19 infection (median days since +PCR: 137, IQR 56-206). Alcohol, smoking, drug use, BMI, age, latest CD4 count and proportion with viral blips were comparable between groups. Systemic inflammation as assessed by targeted proteomics showed 89 upregulated and 43 downregulated proteins in the vaccinated participants. In contrast, individuals with a past COVID-19 infection display lower levels of 138 plasma proteins compared to the uninfected group (see figure). 'Innate immune system' and 'cell death' were upregulated in pathway analysis in vaccinated PLWH, but downregulated in COVID-19 infected participants. The increased systemic inflammation of the COVID-19 vaccinated group was accompanied by lower TNF-alpha and IL-1beta production capacity upon restimulation with a range of microbial stimuli, while production of IL-1Ra was increased. In COVID-19 infected PLWH only a reduced production of TNF-alpha to S. pneumonia was significant. Vaccinated PLWH also showed upregulation of platelet aggregation pathways. Conclusion(s): COVID-19 vaccination in PLWH leads to an increased systemic inflammation, but less effective cytokine production capacity of its immune cells upon microbial stimulation. This pattern is different from that of COVID-19 infection that leads to a decreased inflammatory profile and only minimal effects on cytokine production capacity. (Figure Presented).

14.
Topics in Antiviral Medicine ; 31(2):139, 2023.
Article in English | EMBASE | ID: covidwho-2317864

ABSTRACT

Background: SARS-CoV-2 infection typically causes self-limited disease, but a subset of individuals experience more severe disease associated with respiratory manifestations, hospitalization and mortality. People living with HIV (PLWH) have been shown to have chronic immune activation and inflammation despite effective antiretroviral therapy. During the COVID pandemic, PLWH were found to have an increased risk of hospitalization and mortality with acute COVID-19. The immune response driving these worsened outcomes in PLWH is not defined. We analyzed immune activation and exhaustion markers, as well as antigen specific T cell responses during acute COVID-19 in PLWH versus HIV-seronegative controls to determine the impact of chronic HIV infection and inflammation on acute COVID-19. Method(s): We performed flow cytometric analyses on peripheral blood mononuclear cells from: 1) PLWH with acute COVID-19 (HIV+COVID), 2) HIVseronegative individuals with acute COVID-19 (COVID) and 3) pre-COVID-19 pandemic PLWH (HIV). COVID(+) samples were collected at an average of 4.7 (range 0-16) and 5.5 (range 0-20) days post-symptom onset for the COVID and HIV+COVID cohorts, respectively. Cells were stained for surface markers of activation/exhaustion and intracellular cytokines (with and without SARS-CoV- 2-specific antigen stimulation). Observed immune responses were correlated with disease severity. Result(s): PLWH with acute COVID-19 had increased classical (CD14+) monocytes compared to HIV-seronegative individuals with acute COVID-19. The HIV+COVID cohort also had higher expression of activation (OX40, CD137) and exhaustion (PD1, TIGIT) markers on CD4+ and CD8+ T cells compared to HIV-seronegative individuals. SARS-CoV-2 antigen stimulation resulted in similar response frequencies between the HIV+COVID and COVID cohorts. Conclusion(s): PLWH had increased activation and exhaustion and increased classical monocytes compared to HIV-seronegative presentations of COVID-19, highlighting the persistent immune dysregulation associated with chronic HIV infection. Our findings aid in further characterization of how chronic immune dysregulation impacts the immune response to acute SARS-CoV-2 infection. Future studies include characterizing the impact of acute SARS-CoV-2 infection duration, as well as how chronic immune dysregulation impacts the development of long COVID. (Table Presented).

15.
Topics in Antiviral Medicine ; 31(2):146, 2023.
Article in English | EMBASE | ID: covidwho-2317066

ABSTRACT

Background: People with HIV (PWH) older than age 55 have an enhanced risk of complications from SARS-CoV-2 infection. It is unclear whether COVID-19 vaccines with a booster are as durable in terms of immunogenicity in this cohort or whether these vaccines can destabilize HIV reservoirs. Method(s): We prospectively studied 91 PWH on cART aged 55 or over (n=91) and 23 age-matched individuals without HIV (control group, CG) who received three doses of COVID-19 vaccines (D1-D3) over 48 weeks. Participants received combinations of BNT162b2, mRNA-1273, and ChAdOx1. Of PWH, 42 were immune responders (IR), 20 were non-responders (INR), and 3 had a low-level viremia (LLV). Total and neutralizing Abs to SARS-CoV-2 spike (S) and RBD in sera and saliva, frequency of anti-RBD/NTD memory B cells (spectral flow cytometry), S-specific T cell immunity (IFN-g, IL-2 ELISpot) and HIV reservoirs in peripheral CD4+ T cells (IPDA) were measured. Result(s): No significant differences in vaccine regimens or dosing intervals were observed between PWH and CG. Vaccines elicited equally strong anti-S IgG in PWH vs CG in serum and saliva, and RBD IgG in serum. Serum Abs peaked at 4w after D3. Week 48 serum IgG in PWH vs CG were 916 vs 919 BAU/ mL for S (p=0.624) and 706 vs 752 for RBD (p=0.198), respectively. Week 48 median saliva S IgG: 48.1% AUC of the positive control in PWH vs 95.9% for CG (p=0.384). S IgA: 3.83 vs 20.5 in PWH vs CG (p=0.039). Median neutralizing titers post-D2 were significantly lower in PWH than in CG (NT50 82.9 vs 535, p< 0.001). However, after D3, at 48w, PWH had similar titers as CG: 309 vs 269 (p=0.745), mirroring an increase in RBD/NTD-specific B cells in PWH. Anti-S T cell cytokine responses were stronger in IR PWH after D2 and D3 than in CG. Week 48 S IL-2 responses: median 135 SFC/106 PBMC vs 43.8 (p< 0.001), but only 12.5 in INR (p=0.001 vs IR). COVID-19 vaccines did not affect the size of HIV reservoir in PWH (change in median frequency of intact proviruses from baseline: 95.0 vs 90.9, p=0.952), except in three LLV PWH (mean increase 93.7% at 48w). Conclusion(s): PWH aged 55 and over show diminished neutralizing Ab responses to SARS-CoV-2 with two vaccine doses which are 'rescued' after a booster. PWH have lower S-specific IgA in saliva after vaccination which may affect protection. Enhanced S-specific T cell immunity in PWH suggests Th1 imprinting from preexistent HIV infection. COVID-19 vaccines did not destabilize the HIV reservoir in most PWH but may pose potential risk in unsuppressed viremia.

16.
Topics in Antiviral Medicine ; 31(2):132, 2023.
Article in English | EMBASE | ID: covidwho-2315714

ABSTRACT

Background: Secondary lymphoid organs provide the adequate microenvironment for the development of antigen (Ag)-specific immune responses. The tight collaboration between CD4+ T cells and B cells in germinal centers is crucial to shape B cell fate and optimize antibody maturation. Dissecting these immune interactions remains challenging in humans, and animal models do not always recapitulate human physiology. To address this issue, we developed an in vitro 3D model of a human lymphoid organ. The model relies on a microfluidic device, enabling primary human cells to self-organize in an extracellular matrix (ECM) under continuous fluid perfusion. We applied this Lymphoid Organ-Chip (LO chip) system to the analysis of B cell recall responses to SARS-CoV-2 antigens. Method(s): We used a two-channel microfluidic Chip S1 from Emulate, where the top channel is perfused with antigen (spike protein or SARS-CoV-2 mRNA vaccine), while the bottom channel contains PBMC (n = 14 independent donors) seeded at high-density in a collagen-based ECM. Immune cell division and cluster formation were monitored by confocal imaging, plasmablast differentiation and spike-specific B cell amplification by flow cytometry, antibody secretion by a cell-based binding assay (S-flow). Result(s): Chip perfusion with the SARS-CoV-2 spike protein for 6 days resulted in the induction CD38hiCD27hi plasmablast maturation compared to an irrelevant BSA protein (P< 0.0001). Using fluorescent spike as a probe, we observed a strong amplification of spike-specific B cell (from 3.7 to 140-fold increase). In line with this rapid memory B cell response, spike-specific antibodies production could be detected as early as day 6 of culture. Spike perfusion also induced CD4+ T cell activation (CD38+ ICOS+), which correlated with the level of B cell maturation. The magnitude of specific B cell amplification in the LO chip was higher than in 2D and 3D static cultures at day 6, showing the added value of 3D perfused culture for the induction of recall responses. Interestingly, the perfusion of mRNA-based SARS-CoV-2 vaccines also led to strong B cell maturation and specific B cell amplification, indicating that mRNA-derived spike could be expressed and efficiently presented in the LO chip. Conclusion(s): We developed a versatile Lymphoid Organ-Chip model suitable for the rapid evaluation of B cell recall responses. The model is responsive to protein and mRNA-encoded antigens, highlighting its potential in the evaluation of SARS-CoV-2 vaccine boosting strategies.

17.
Topics in Antiviral Medicine ; 31(2):335-336, 2023.
Article in English | EMBASE | ID: covidwho-2315633

ABSTRACT

Background: Long COVID can be developed by individuals after an infection with SARS-CoV-2 as described by the WHO. Although this condition is more commonly described in adults, it can occur in children and adolescents with a wide range of estimated prevalence of 1-25%. Little is known about the role of the immune system in long COVID. However, one of the main hypotheses about the underlying mechanism in long COVID is that there is an immune and inflammatory dysregulation that persists after the acute infection. The objective of this study is to compare immune cells populations, and inflammatory biomarkers in paediatric populations with and without long COVID. Method(s): We analyzed 55 blood samples from the pediaCOVID cohort (Hospital Germans Trias i Pujol), which includes more than 130 children diagnosed with long COVID and 23 controls. We measured different immune cell populations using spectral cytometry with a panel of 37 cellular markers, and 42 inflammatory markers using Luminex or ELISA. EdgeR was used for statistical analysis of the spectral data;p-values of inflammatory markers were calculated using the likelihood ratio test and they were corrected for multiple comparisons. Result(s): The study cohort had a median age of 14.3 (IQR, 12.5-15.2) and 69.1% female. Patients had at least 3 symptoms associated with long COVID (median [IQR];10 [7-16]). The most common symptom was asthenia/fatigue (98.2%). Compared to the control cohort, children with long COVID had increased numbers of CD4+CD8+ T cells, IgA+CD21+CD27+ memory B cells, and IgA+CD21-CD27- memory B cells, while CD4+ TEMRA cells (CD45RA+, CCR7-), intermediate monocytes (CD14+, CD16+) and classical monocytes (CD14+, CD16-) were decreased (all p< 0.05;q=n.s.). None of the 42 inflammatory biomarkers showed significant differences between children with and without long COVID. Conclusion(s): The results of this study suggest that specific populations of peripheral blood immune cells might be involved in the mechanisms underlying prolonged COVID in children and adolescents. The increase in both IgA+CD21-CD27- and IgA+CD21+CD27+ memory B cells could be associated with the persistence of viral antigen in the gut and/or gut dysbiosis. Moreover, the decrease in CD4+ TEMRA cells could be related to autoantibodies against G-protein coupled receptors (GPCRs), since this cell population can express GPR56, and autoantibodies against GPCRs were previously reported to be elevated in adults with long COVID.

18.
Topics in Antiviral Medicine ; 31(2):111, 2023.
Article in English | EMBASE | ID: covidwho-2315612

ABSTRACT

Background: Autophagy, a cytosolic-structure degradation pathway, allows production of IL21 by CD4 T-cells and efficient cytolytic responses by CD8 T-cells. Autophagy is in part regulated by acyl-CoA-binding protein (ACBP) which has two functions. Intracellular ACBP favors autophagy, whereas secreted extracellular ACBP inhibits autophagy. Herein, we assessed whether autophagy and the ACBP pathway were associated with COVID-19 severity. Method(s): Through the BQC-19 Quebec biobank, somalogic proteomic analysis was performed on 5200 proteins in plasma samples collected between March 2020 and December 2021. Plasma from 903 patients (all data available) during the acute phase of COVID-19 were assessed. COVID-19 severity was stratified using WHO criteria. In vitro, ACBP intracellular levels, autophagy levels (LC3II) and IL21 production were assessed by flow in PBMCs after a 24h stimulation with IL6, phorbol myristate acetate (PMA)+ionomycin or lipopolysaccharide (LPS). Plasma levels of anti-SARS-CoV-2 (full spike protein or RBD) IgG were assessed by ELISA. Result(s): Median age of the cohort was 62 yo, 48% were female, 55% had comorbidities (see table). Increasing plasma levels of ACBP were found with severity (mild, moderate, severe and fatal groups having 5.3, 7.3, 9.5 and 10.6 RFU/50muL of plasma, respectively, p< 0.001 for all comparisons). Patients with comorbidities had higher plasma ACBP levels (7.4 vs 6.4 RFU/50muL, p< 0.001). Plasma ACBP levels were higher during the delta and omicron-variant periods (8.4 vs 6.8 RFU/50muL;p< 0.001). Plasma ACBP levels correlated with LC3II levels (r=0.51, P< 0.001) and IL6 (r=0.41, p< 0.001), but neither with markers IL1beta nor IL8. ACBP levels negatively correlated with IL21 levels (r=-0.27, p< 0.001), independently of age, sex, and severity. ACBP levels were not associated with levels of anti-SARS-CoV-2 IgG levels. In vitro, IL6 stimulation of healthy control PBMC induced extracellular ACBP release. Moreover, adding recombinant ACBP: 1) reduced autophagy in lymphocytes and monocytes upon polyclonal stimulation with PMA/ionomycin or LPS;2) reduced intracellular production of IL21 in T-cells after PMA/ ionomycin stimulation. Conclusion(s): Plasma ACBP levels were inversely linked with IL21 levels, suggesting that autophagy and IL21 allow control of SARS-CoV-2 infection, independently of the level of SARS-CoV-2 antibody secretion. ACBP is a targetable autophagy checkpoint and its extracellular inhibition may improve SARS-CoV-2 immune control. (Table Presented).

19.
Topics in Antiviral Medicine ; 31(2):336, 2023.
Article in English | EMBASE | ID: covidwho-2314601

ABSTRACT

Background: Severe COVID-19 is less common in children than in adults. Increasing evidence show that distinct immune-pathological changes can persist weeks or months after SARS-CoV2 infection, leading to Long COVID (LC). We investigated the systemic type I/III interferon (IFN-I/III) and inflammation response in peripheral blood mononuclear cells (PBMCs) of children with and without LC symptoms. Method(s): Blood samples were collected from children attending Umberto I hospital of Rome, within 3-6 months after a SARS-CoV-2 positive test and from control children. RNA was extracted from PBMCs for determining the levels of IFN-I (IFN-Alpha2, -Beta, -Epsilon and -Omega), IFN-III (IFN-Lambda1-3), NLRP3 and IL-1beta genes, and miR-141 expression by quantitative RealTime-PCR assays, normalized to housekeeping GUS gene and RNU6B, respectively. Result(s): 28 participants (M 12.5y SD 3.0) with LC symptoms, 28 participants (M 11.8y SD 3.0) without LC symptoms and 18 children who've never had SARS-CoV- 2 infection (M 10.5y SD 3.1) were enrolled. Comparing the three study groups, we found reduced levels of IFN-Lambda1, IFN-Lambda2 and IFN-Lambda3 (p=0.006, p< 0.001, p=0.012, respectively;Kruskal-Wallis (KW) test) mRNA in patients who have had SARS-CoV-2 infection as opposed to control group, whereas transcript levels of IFN-Epsilon (p= 0.019;KW test) were increased in the former with respect to the latter group;as well, remaining IFN-I genes analyzed showed a tendency to be up-regulated. As far as NLRP3 and IL-1beta levels was concerned, these genes were increased in LC patients (p< 0.001 for both genes;KW test). Additionally, miR-141, which has been reported to regulate inflammasome response, was overexpressed in LC patients (p< 0.001;Mann-Whitney test). Conclusion(s): These results showed a decreased levels of IFN-III mRNAs and an overexpression of IFN-Epsilon in children after 3-6 months of SARS-CoV-2 infection regardless of development of LC symptoms, suggesting that SARSCoV- 2 could have caused dysregulation of IFN response through unknown mechanisms (e.g. epigenetic modifications). Also, we found an overexpression of miR-141, NLRP3 and IL-1beta mRNAs in LC patients, indicating that a prolonged activation of inflammasome pathways could be associated with the development of LC symptoms.

20.
Topics in Antiviral Medicine ; 31(2):142-143, 2023.
Article in English | EMBASE | ID: covidwho-2314582

ABSTRACT

Background: Hybrid immunity is more protective than vaccination or prior infection alone. To understand the formation of hybrid immunity, we studied how SARS-CoV-2 mRNA vaccines interact with T cell memory by tracking spike (S) specific T cells in cohorts of hospitalized (n = 19) or non-hospitalized (n = 34) COVID-19 convalescents. We hypothesized that S-reactive CD4 and CD8 T cells would increase in response to serial vaccine doses and reflect prior immune exposure at the clonal level. Method(s): After vaccination, we stimulated PBMCs from 12 participants (8M/4F) with peptides spanning S. Activated cells (CD69+CD137+) were sorted and CD4/CD8 phenotype linked with paired TRB-TRA sequences at single cell resolution. S-reactive TRB sequences were mapped within 4-6 serial blood and post-booster nasal TRB repertoires to evaluate S-reactive CD4 and CD8 T cell clonotypic kinetics spanning convalescence to boost. PBMCs from 53 participants were sequenced with the ImmunoSEQ assay to evaluate S-reactive TRB breadth using a database of S-assigned TRB sequences (Adaptive Biotechnologies), comparing S-reactive TRB diagnostic breadth by hospitalization status (Wilcoxon test). Result(s): SARS-CoV-2 mRNA vaccination provoked strong T cell clonal expansion in most participants. At 8-12 months after infection, each primary mRNA dose increased the abundance and diversity of S-specific T cells. Clonal and integrated expansions were larger in CD8 than in CD4 T cells. At the convalescent time point, we observed greater diagnostic S-reactive CD4 T cell breadth in hospitalized vs. non-hospitalized patients (p< 0.01). CD4 T cell S breadth was again higher in previously hospitalized persons after the 2nd primary (p=0.02) and booster (p< 0.01) doses, suggesting that diverse CD4 T cell memory after severe infection leads to increased repertoire diversity after vaccination. S-specific T cells with identical TCRs were detectable in blood and the nasal mucosa, with specificity confirmed using a TRA/TRB transgenic T cell with the matching receptor. Conclusion(s): Although both S-specific CD8 and CD4 T cell memory are established by prior infection, S-specific CD8 T cells predominated in blood after primary vaccination, with some clonotypes showing up to 1000-fold expansion across 1-2 mRNA doses. Vaccine-reactive CD8 clonotypes were present at the barrier nasal site after booster mRNA dosing. Severe disease imprinted a highly diverse S-reactive CD4 repertoire persisting through vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL